Differential central projections of physiologically characterized horizontal semicircular canal vestibular nerve afferents in the toadfish,Opsanus tau

Author(s):  
Allen F. Mensinger ◽  
John P. Carey ◽  
Richard Boyle ◽  
Stephen M. Highstein
2007 ◽  
Vol 98 (6) ◽  
pp. 3197-3205 ◽  
Author(s):  
Aizhen Yang ◽  
Timothy E. Hullar

The relationship between semicircular canal radius of curvature and afferent sensitivity has not been experimentally determined. We characterized mouse semicircular canal afferent responses to sinusoidal head rotations to facilitate interspecies and intraspecies comparisons of canal size to sensitivity. The interspecies experiment compared the horizontal canal afferent responses among animals ranging in size from mouse to rhesus monkey. The intraspecies experiment compared afferent responses from the larger anterior canal to those from the smaller horizontal canal of mice. The responses of mouse vestibular-nerve afferents showed a low- and high-frequency phase lead and high-frequency gain enhancement. Regular horizontal-canal afferents showed a sensitivity to 0.5-Hz sinusoidal rotations of 0.10 ± 0.03 (SD) spike · s−1/deg · s−1 and high-gain irregular afferents showed a sensitivity of 0.25 ± 0.11 spike · s−1/deg · s−1. The interspecies comparison showed that the sensitivity of regular afferents was related to the radius of curvature R according to the formula Gr = 0.23R − 0.09 ( r2 = 0.86) and the sensitivity of irregular afferents was related to radius according to the formula Gi = 0.32R + 0.01 ( r2 = 0.67). The intraspecies comparison showed that regularly firing anterior canal afferents were significantly more sensitive than those from the relatively smaller horizontal canal, with Gr = 0.25R. This suggests that canal radius of curvature is closely related to afferent sensitivity both among and within species. If the relationship in humans is similar to that demonstrated here, the sensitivity of their regular vestibular-nerve afferents to 0.5-Hz rotations is likely to be about 0.67 spike · s−1/deg · s−1 and of their high-gain irregular afferents about 1.06 spikes · s−1/deg · s−1.


2005 ◽  
Vol 93 (5) ◽  
pp. 2777-2786 ◽  
Author(s):  
Timothy E. Hullar ◽  
Charles C. Della Santina ◽  
Timo Hirvonen ◽  
David M. Lasker ◽  
John P. Carey ◽  
...  

Mammalian vestibular-nerve afferents innervating the semicircular canals have been divided into groups according to their discharge regularity, gain at 2-Hz rotational stimulation, and morphology. Low-gain irregular afferents terminate in calyx endings in the central crista, high-gain irregular afferents synapse more peripherally in dimorphic (bouton and calyx) endings, and regular afferents terminate in the peripheral zone as bouton-only and dimorphic endings. The response dynamics of these three groups have been described only up to 4 Hz in previous studies. Reported here are responses of chinchilla semicircular canal vestibular-nerve afferents to rotational stimuli at frequencies up to 16 Hz. The sensitivity of all afferents increased with increasing frequency with the sensitivity of low-gain irregular afferents increasing the most and matching the high-gain irregular afferents at 16 Hz. All afferents increased their phase lead with respect to stimulus velocity at higher frequencies with the highest leads in low-gain irregular afferents and the lowest in regular afferents. No attenuation of sensitivity or shift in phase consistent with the presence of a high-frequency pole over the range tested was noted. Responses were best fit with a torsion-pendulum model combined with a lead operator (τHF1s + 1)(τHF2s + 1). The discharge regularity of individual afferents was correlated to the value of each afferent's lead operator time constants. These findings suggest that low-gain irregular afferents are well suited for encoding the onset of rapid head movements, a property that would be advantageous for initiation of reflexes with short latency such as the vestibulo-ocular reflex.


2001 ◽  
Vol 86 (4) ◽  
pp. 2118-2122 ◽  
Author(s):  
Richard Boyle ◽  
Allen F. Mensinger ◽  
Kaoru Yoshida ◽  
Shiro Usui ◽  
Anthony Intravaia ◽  
...  

The consequence of exposure to microgravity on the otolith organs was studied by recording the responses of vestibular nerve afferents supplying the utricular otolith organ to inertial accelerations in four toadfish, Opsanus tau, sequentially for 5 days following two National Aeronautics and Space Administration shuttle orbital flights. Within the first day postflight, the magnitude of response to an applied translation was on average three times greater than for controls. The reduced gravitational acceleration in orbit apparently resulted in an upregulation of the sensitivity of utricular afferents. By 30 h postflight, responses were statistically similar to control. The time course of return to normal afferent sensitivity parallels the reported decrease in vestibular disorientation in astronauts following return from space.


2005 ◽  
Vol 64 (6) ◽  
pp. 479-483 ◽  
Author(s):  
Nobuya Fujita ◽  
Toshiaki Yamanaka ◽  
Hideyuki Okamoto ◽  
Takayuki Murai ◽  
Hiroshi Hosoi

Author(s):  
Robert B. Silver ◽  
Anthony P. Reeves ◽  
Antionette Steinacker ◽  
Stephen M. Highstein

Sign in / Sign up

Export Citation Format

Share Document